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The breakdown of Rossby waves in a bounded system is studied for the case in 
which the wave amplitude is small. In a very long, laterally bounded, channel all 
waves are unstable via second-order resonant interactions except those of wave- 
number n/L in the cross-channel direction (where L is the channel width), which 
are stable if their longitudinal wavenumber is greater than 0.681nlL. These 
waves are, however, unstable to weaker side-band interactions, so that all waves 
with non-zero longitudinal wavenumber are unstable. The transition from side- 
band to triad instability occurs where the group velocity of the basic wave is 
equal to  the velocity of long waves. 

1. Introduction 
The breakdown of wave motion via nonlinear intei-action with other, parasitic 

waves has been studied for a number of systems in recent years. In  particular, 
Gill (1974) investigated the stability of Rossby waves on an unbounded ,&plane 
and showed that (in an inviscid fluid) these waves are unstable for all wave- 
numbers. The nature of the instability depends on the size of the parameter 
E = Ul/3Lz (where U and L are typical velocity and length scales of the wave, 
respectively), the ratio of relative to planetary vorticity gradients. If 8 is small, 
nonlinear effects are weak, and the instability may proceed only via resonant 
interactions; for the highly nonlinear case ( E  large), breakdown takes the form 
of a Rayleigh inflexion-point instability. 

The introduction of lateral boundaries has a stabilizing effect on such motion. 
The role of the boundaries is somewhat different in the cases of large or small E ,  

but it depends crucially on the conservation properties of the system, in the form 
of the criterion of Fjmtoft (1953) that energy must be transferred simultaneously 
to both longer and shorter wavelengths (in such a way that both kinetic energy 
and enstrophy are conserved). In  the highly nonlinear case ( E  large) this con- 
straint inhibits instability of large-scale waves since such waves cannot transfer 
energy to yet larger scales. Thus Hoskins (1973) found that a large amplitude 
Rossby wave of gravest meridionall structure (i.e. one half-wavelength across 

t Present address: CSIRO, Division of Atmospheric Physics, Aspendale, Victoria 3195, 

$ For simplicity (and by analogy with geophysical systems), we refer to the directions 
Australia. 

along and across the channel as ‘zonal’ and ‘meridional’ respectively. 
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the channel) is unstable to zonal flow perturbations only if its zonal wavenumber 
k is greater than twice its meridional wavenumber 1, while Baines (1976) showed 
that a planetary wave on a sphere is unstable, provided that its amplitude is 
large enough, if its total wavenumber is greater than 2. 

This paper is concerned with the stability properties when E is small. In  this 
case, the additional requirement of resonance must be met. The boundaries 
restrict the possible meridional wavenumbers to a discrete set of values. If the 
channel is long enough for the zonal wavenumber to be regarded as continuous, 
then at  least one resonant triad can be found for any value of the wavenumber 
(k, I )  of the initial wave, but not all of these corresp0n.d to instabilities (for which 
the triad components must be such that Fjrartoft's criterion is satisfied). It is 
found that a wave of gravest meridional structure is unstable via triad interac- 
tions if the ratio k/E of its zonal and meridional wavenumbers is greater than a 
critical value qc = 0.681 ; waves of shorter meridional wavelength are unstable for 
all non-zero k .  

The transition at  kll = T~ corresponds to equality between the group velocity 
of the basic wave (k, 1 )  and that of a long wave of' meridional wavenumber 21. 
McIntyre (1973) demonstrated the existence of this resonance in the correspond- 
ing internal wave problem and Grimshaw (1975) showed that, at the resonance, 
interaction takes place on a time scale formally of order E-4 ,  while for k/ l  < qc a 
wave is unstable to side-band interactions (i.e. modulation of the basic wave via 
interaction with a long wave) on a time scale c2. Analogous results are obtained 
in this case, with the solution in the regime of long-wave resonance providing 
continuity between the side-band and triad instabilities. 

2. The interaction equation 
Consider two-dimensional motion of fluid on a P-plane bounded meridionally 

by rigid walls a t  y' = 0, nL and unbounded in the x' (zonal) direction. The govern- 
ing equation is the non-divergent barotropic vorticity equation 

where t' is time, I&' the stream function such that the velocity components in the 
(x', y') directions are 

and V'2 

dimensionless variables 

v') = ( - a+'/ay', a$'/aX'), 

a2/ax'2 + a2/ayr2. Then, choosing a typical velocity scale U ,  we define the 

x = x'/L, y = y ' /L ,  t = PLt', 4 = $'/UL, 

upon which (1) becomes 

where V2 = a2/ax2+a2/ay2 and e = U/PL2. The parameter E is a measure of the 
nonlinearity (Gill 1974), and this paper is concerned with the case 6 < 1. 
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The meridional boundary conditions are satisfied by a set of waves of the form 

$ = x@, = ~u,(t)exp(ik,z)sinZ,y 
n n 

(3) 

(where I ,  is a positive integer), provided that k, =+ 0. If we introduce the notation 
that if k, = (k,, I , )  then k,* = ( - k,, Z,), then, for real $, a, = a:, where &, = kz. 

Several time scales arise in the problem in addition to the propagation time 
scale t ;  the triad interaction takes place on the time scale T, (or order e-l), while 
that of the weaker side-band interaction, T,, is of order 6-2 (Newel1 1969). Further, 
we introduce a long space scale X, corresponding to a bandwidth of the resonant 
interactions of order e in wavenumber space (see Bretherton (1964) and below), so 
that 

-+--+€--+@-- 
at at aT, aT2 
a a  a a 

and 
a a  a 

ax ax ax. --+-+€- 

Then in (3) we write a, = bn (X, T,, T2) exp ( - iw, t ) ,  

F ( b n )  = € 2 I= .U;, ( b p ,  bp) 4 k p  + k g  - kn) exp [ i (w,  - u2, - wn) t], 

(4) 

so that (2) becomes the interaction equation 

( 5 )  
P q  

where the operators 9 and dc may be expanded as 
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3. Stability of waves to resonant triads 
Consider a triad of interacting waves with wavenumbers k,, k, and k,, where 

k, + k, + k, = 0, 1, j~ 1, i- 1, = 0. 

Evolution takes place on the time scale T,, and we write 

@n = {b,(X, T,)exp[i(k,x-w,t)] +c.c.)sinZ,y, 

0, +w,  +w,  = 0 

(13) 

(14) 

where C.C. denotes 'complex conjugate'. If the triad is resonant, i.e. 

(it will be shown below that such non-trivial solutions can be found), then all 
other wave components are negligible to the order of interest. 

To leading order the interaction equation (5) gives the dispersion relation 

f(k,,w,) = 0, (15) 
while to order E we find 

together with two similar equations for b, and b,, where the group velocity is 

and the interaction coefficient 

a(k,, k,, k,) = (r(k,, k,? kq) +y(k,, kq'kp)}/(g) (18) 
n 

It follows from (9) and (18) that a(k,, kp, k,) = 0, so that a single steady wave, 
described by 6 ,  = A and b, = b, = 0, is a solution to ( l6) ,  and we investigate the 
stability of such a state by adding perturbations b, = Z, and b, = z,, where 
I z, I 4 1 A I (but, for consistency, I z, I >> 6). Linearizing, we obtain the equations 

(19) I ( a/aT, + C, a/aX)  Z, = - ia( k,, k: , k,*) A *z: 

(a/aT,+C,a/aX)~, = -ia(k,,k:, k,*) A*z,*, and 

which have solutions of the form 

zzcc z$ oc exp {i(KX - QT,)) 
if 

Hence the wave is unstable to such a perturbation if the condition 

S2 = +K(C, +C,) jI {)K2(C,-C3)2-a(k,, k;, k:)ajk,, k:, k,*)IA12)). (20) 

K2(C, -C3)' < 4a(k,, k$, k,*)a(k,, k,*, k,*)IA(' (21) 

a(k,,k,*, G) k;, k:) > 0. (22) 

is satisfied. Clearly, no matter now small K2,  instability may occur only if 
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Inequality (22) is a criterion deriving from the physical constraints on the 
system, which, in the present case, are the conservation of kinetic energy and 
enstrophy. Substituting for the interaction coeficientls, it  may be rewritten 
(Hoskins 1973; Gill 1974) as 

which is a statement of the anti-cascade theorem of F i~ r to f t  (1953): energy 
transfer to higher wavenumbers must be accompanied by simultaneous transfer 
to lower wavenumbers. One may also use the dispersion relation to show that 
(22) implies that w2w3 > 0,  so that, from (14)) Jwll > max(lw,I, 1 ~ ~ 1 ) .  This is 
Hasselmann’s (1967) criterion that a wave is unstable via interactions within a 
resonant triad only if it is the component of the triad of highest frequency. 

If inequality (22) is satisfied, then instability will proceed if the triad is close 
enough to resonance. In  order that energy may be exchanged coherently over the 
long time scale Tl of the interaction, the sum of the (finite amplitude) frequencies 
of the waves must be zero at  least to order E .  If K is non-zero, the triad is not 
exactly resonant in a linear sense, the wave frequencies being o,, w(k ,  + EK,  Z,) = 

w2 +€KC,  + O(s2) and o ( k ,  - sK, 13) = w3 - eKC, + 0 ( e 2 ) ,  so that, using the reso- 
nance condition (14), their sum is &(C2 -C3) + O(e2).  Thus condition (21) merely 
expresses the requirement that finite amplitude effects be large enough to over- 
come this dispersion, and defines a resonant spectral bandwidth A,,, for the 
int,eraction, such that, if K = ? 

If the velocity scale U is chosen such that A = 1, then the maximum growth 
rate, attained when K = 0, is scr, where 

inequality (21) becomes an equality. 

cr = ( - = {a(k,, kz, k:) a(k,, k:, k,*))). (23) 

4. Results for Rossby waves in a channel 
The quadratic instability problem for a small amplitude Rossby wave in a 

channel has been reduced to that of finding two other members of a resonant 
triad whose wavenumbers are such that energy flow from the initial wave into 
the two parasitic waves is consistent with the physical constraints on the motion. 

In  an unbounded fluid, resonant triads can always be found (Longuet-Higgins 
& Gill 1967) but in the present case the triads which simultaneously satisfy the 
kinematic resonancc conditions (12) and (14) must also satisfy the constraint that 
the meridional wavenumbers of the triad components be integers. Calculations 
and experiments involving internal wave stability in a channel (Martin, Sim- 
mons & Wunsch 1972) and in a system bounded in both directions (McEwan, 
Mander & Smith 1972) show that resonant breakdown invariably occurs (for 
small enough viscosity). However, unlike Rossby waves, internal wave motions 
are not constrained by enstrophy conservation and instability may, as an extreme 
example, proceed by transfer of energy solely to much smaller scales (McEwan 
& Robinson 1975) for which the constraints of boundedness are less important 
(Plumb 1977). 

In practice i t  is straightforward to locate the resonant triads that include a 
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FIGURE 1. (a) Zonal wavenumbers kkm), kim) of the rnth growing mode perturbation to an 
initial wave k, = (kl, 1) .  Meridional wavenumbers: Zil) = 2, Zf) = 1; ZLa) = 3 , s -  I") - 2. * 
2f) = 4, lis) = 3. ( b )  Growth rates of the mth mode for exact resonance, i.e. K = 0 with 
IAl = 1.  

given wave k, by scanning (numerically) k, space (for I ,  +Z,, there are two 
corresponding values of k,, with 2, = / I ,  & / , I )  and then using the dispersion 
relation to evaluate w, +c, +w3 as a function of k,. The zeros of this function 
give the resonant triads. It transpires that, for any k,, at least one resonant triad 
can be found, but it is not always possible to satisfy condition (22). The pertur- 
bation wavenumbers k, and k, to which wave 1 is unstable, satisfying (12), (14) 
and (22), are plotted for the case I ,  = 1 in figure 1 (a) .  If k, < 0.681 no unstable 
modes exist, whereas at least one such mode can be found for all k, > 0.681. The 
growth rates u (for 1Al = 1) are shown in figure 1 ( b ) ;  as k, increases, the most 
rapidly growing perturbations are those with increasingly large meridional 
wavenumbers. Figure 2 shows the unstable modes and growth rates for I ,  = 2; 
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k, 

FIGURE 2. As figure I ,  but with k, = (kl, 2). Meridional wavenumbers: 1:’ = 3,l;‘) = 1; 
l ; B )  = 4, l?’ = 2 ;  zp’ = 3, 1;’ = 5 .  

in this case t,here is a t  least one perturbation mode to which the wave is unstable 
for any non-zero k,. Calculations with 2 < 1, < 5 (not presented here) show that 
this is true in these cases also. 

Note that all the growing perturbations are such that energy is transferred to 
longer zonal wavelengths only. This corresponds to the tendency for weakly 
interacting eddies on a P-plane to become east-west orientated in the study of 
Rhines (1975) and is consistent with the anti-cascade theorem; the meridional 
scale of the mot,ion is decreasing (at least one growing mode has 1 2 2), so that, in 
order that both kinetic energy and enstrophy be conserved, the zonal scale must 
increase. Indeed, the generality of this behaviour follows from Hasselmann’s 
criterion. If k, > 0, then the dispersion relation 

W ,  = - k , / ( k i  + E $ )  (24) 
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gives w1 < 0. Hence, with the sign convention adopted in (12) and ( 14)) w, and w3 
must both be positive, since lw21 and Iw3( must both be less than lwll for instability. 
It then follows directly from (24) that k, and k3 are negative and hence that 
lk,l < lk,l and lksl < Ih,i. Thus resonant breakdown of a Rossby wave always 
involves transfer of energy to zonally longer waves only, whether or not the 
fluid is bounded. 

The nature of the transition a t  k,  = 0.681 with I ,  = 1 is important in the inter- 
pretation of the results of the following sections. This mode (labelled m = 1 
in figure 1) has k, = (k,, I), k, = (k,, 22) and k, = (k3, I ) .  In  the region of the 
transition, k,  = - Sk and k3 = Sk - k,, where Sk < k,. Hence w, N- C, 6k and 
w3 = - w, +C, Sk, where C, = C(k, ,  I )  and C, = C(0, 21) are the group velocities 
of the basic wave and of long waves respectively. Then w, + w2 + w3 z (C, - C,) Sk 
and so the requirement of resonance is that C, = C, at the transition. Since 

Cl-C2 = (3 l2 -6k? l2 -  k ~ ) / U 2 ( k ~ + 1 2 ) 2  ( 2 5 )  

the transition occurs where kJ1, = yc = 0.681, (26 )  

in agreement with the results in figure 1. With 2, = 2, the transition for mode 2 in 
figure 2 is found at  k, = 2 ~ ~ ;  in this case, however, the wave (k l ,  2) is unstable to 
perturbations of mode 1 when k,  < 27,) so that the mode 2 transition is less 
significant. 

In  the region of this transition, say k, = T~ I + A, where A < 7, I ,  with k, = - Sk 
we have 

where we have used (a2w/ak2),, = 0 and where the subscript c refers to values at 
the long-wave resonance, i.e. k, = 7, 1, k, = 0. If follows that 

w1 + w, + w3 = Sk (A - gsk) ( a 2 W / a k 2 ) , , ,  

Sk = 2A. (27) 

Now, since lk,l > lkll at the transition, the inequality lk31 < lkll must be 
satisfied for instability. Hence Sk > 0 and (27) shows that A must be positive, 
i.e. the wave is unstable via this interaction only for k, > qCl,  as the calculations 
show. 

To conclude this section we note that validity of the triad concept requires that 
interaction other than that indicated by the sign convention in (12) and (14), in 
triads such as (k,, k,, k, - k,), be non-resonant. However, if Sk, A < O ( E )  the 
mode k, = k, - k, = (7, 1 + A  + Sk, 2)  forms another triad k, - k, - k, = 0 for 
which w1-w2-w4 < O(ej. Hence, from the arguments of the previous section, 
we may not neglect the contribution of this extra component and the  triad 
analysis breaks down unless A > O(a). 

5. Instability via resonant side bands 
In  addition to triad interactions, the requirements of resonance may be met by 

quartet or higher-order resonances, in which case interaction takes place on a 
time scale e-2 or longer. Another class of interactionisthe side-band resonance, in 
which the basic wave interacts with and transfers energy into waves of slightly 
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different wavenumber and long waves; the process may be regarded as one of 
spectral broadening. The mechanism was demonstrated for water waves by 
Benjamin & Feir (1967),  while Newell (1969) showed that such interaction may 
occur in unbounded Rossby waves. This interaction causes instability of long 
internal waves in a bounded geometry analogous to that of the present problem 
(Grimshaw 1975). 

The waves participating in the interaction are waves with wavenumbers, say, 
k, = ( k ,  1 )  and k: = ( k  & 6k, 1) and a long wave with k, = (Sk, 21). The structure is 
not that of a quartet resonance, but of two almost resonant triads with the 
common members k, and k,; the two triads ( 1 ,  2 ,  l * )  have 

k , + k , - k :  = 0 

and w1 + ~2 - W: = + (C, - C,) 6k + 0(6k2). 
Hence for 6k small enough (6k < O(E)) both triads become resonant. (Interac- 
tions of modes 1 and 1*, driving the harmonic, are non-resonant and therefore 
negligible.) Note that, since a(k,, k,, k,) = 0, the interaction coefficients a(k,, k,, 
k?) governing this process are proportional to 6k and so, with 6k = O(E), the 
growth rates are at  most 0 ( e 2 )  (Newell 1969). 

With 6k of this order it is sufficient to consider the interaction between the two 
'carrier' waves k, = ( k ,  1 )  and k, = (0 ,  21) and to introduce the side-band and 
long-wave structure as a function of the slow variable X. Because of this weak- 
ness of the interaction, it becomes necessary to include the effect of the non- 
resonant component ( k ,  31) ; all other wave components are negligible. 

We write 

(28 )  i 
$, = {b, ( X ,  T,, T,) ei(ks-ut)+ c.c.)sin Zy, 

$, = {b,  (X, TI, T,) + c.c.} sin 21y, 

$3 = {b3 ( X ,  TI, T,) ei(kz- .Jt) + c.c.}sin 31y, 

where w = w(k,  1)) and perturb about a mean state, such that 

b, = A +z,, b, = x,, b, = z3, 

where x, is a small perturbation (but /z,I E ) ,  which is expanded as 

To order so, the interaction equation (5) gives 

x p  = 0. 

The order-s equations become, after some simplification, 

(a/aT, + C, a/aX) z$') = - ia(k,, k,, k,) (zT' +xio)*) A ,  

(a/aT, + c, apx) x p  = 0) 

f(k3,w)~k1) = (af /a~)~a(k, ,  k,, k,) (ZL')+X~')*)A. 



714 R.  A .  P lumb 

Equations ( 3 0 )  have the solutions 

(i) zLo) = ~2(T2)exp[iK(X-C,T,)]+N,(T2)exp[-iK(X-C,T,)], 

- ( M z  + N,) exp [ - i K ( X  - C, T,)]}, 

with zhl) = (aflawk a(k3, k,, k,) A(z&O) + zLo)*), f (k3, w )  

and (ii) zi0) = M1(T2) exp [ i K ( X  - C, T,)] + N, (T,) exp [ - i K ( X  - C, T,)], 

(3% c )  z&o) = (1) = 0. 
23 

So, to leading order, the solution consists of (i) two wave packets propagating a t  
the group velocity of component 2 or (ii) a wave packet of component 1 propagat- 
ing at its own group velocity; the nonlinear feedback is not yet apparent. 

To order €2, the two equations describing the evolution of components 1 and 2 
on the time scale T, are 

a 
ax = - ia(k,, k,, k,) A(#) + z!jl)*) -P(kl, k,, k,) A - ( zLO)  + zL0)*) ( 3 3 a )  

and 

Z, )-p(k2,kF,kl)(Ax+A**), az(p)* ( 3 3 b )  
ax = - ia (k,, k,, k$) (A@* -A* (') 

where P(kn, kp, k p )  = { ~ ( k n ,  kp, kq) + ~ ( k n ,  $5 kp)}/(af/aw)n- (34) 

Now consider the evolution of mode (i) on the time scale T,. Substituting from 
( 2 8 )  into ( 3 0 b ) ,  and suppressing secularities on the time scale T,, we find 

The wave component 2 is unaffected by the nonlinearity (whose only role is to 
force non-zero components 1 and 3 ) ,  and the initial wave is therefore stable to 
such a perturbation. 
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For mode (ii), (30b)  gives 

715 

+(AM:+A*Nl)exp[-iK(X-CITl)]}. ' (37 )  

Then suppression of secularities in ( 3 0 a )  leads to the two equations 

Looking for solutions Ml cc N;" cc exp (iRT,), we find 

so that the initial wave $ = A cos (kx - w t )  sin ly is unstable to side-band pertur- 
bations if 

4k1, k,, kJP(k2, k,*, kl)/hl (CZ - C,) > 0 (40) 

and K2 < I ~ ~ ~ ~ 1 ~ ~ 1 , ~ z ~ B ~ ~ 2 , ~ f , ~ 1 ~ / ~ 1 ~ ~ 2 - ~ 1 ~ I  (41) 

Condition (40) gives 

4k212(k2 + 12)4/(k4 + 6k212 - 3Z4) > 0, 

i.e. k/Z < vc: waves of zonal wavelength longer then 2n/r,1,2 are unstable. The 
maximum growth rate s 2 u  is attained when 

PI2 K2 = 2+1, kl, kz)P(kz, k:, kl) 
(C2 - Cl) A1 

Q = ( - m m a x  = (24k1, kl, k,)P(k,, kf, kJ/(C2--Cl)[ 

and CT is given, with IAl = 1, by 

(42) 

for k/l < 7,; as a function of wavenumber, it  has the form 

u = k2Z2[3- (k/l)'] [l + (k/Z)']/[3- 6(k/1)2- (k/Z)4]. 

The quantity a / k V  increases indefinitely as k/l+ vc; the theory becomes invalid 
close to the long-wave resonance when Jk-r,~,l l  < O(s) and it is necessary to 
consider this case separately. 

6. Long-wave resonance 
The preceding analyses of resonant-triad and side-band instability both break 

down when k N qcZ, i.e. when the group velocity of the basic wave is equal to the 
long-wave (group and phase) velocity. This resonance has been considered by 
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Grimshaw (1975) for the case of internal waves; he showed that, retaining 6 as the 
amplitude scale, the correct expansions for the space and time derivatives are 

and 

a a  a 
- + - - + € ~ -  
ax ax ax!, 
a a  2 a - -+ - + €8 - + €4 - 
at at aT; aTL’ 

The perturbations are expanded as 

(43) 

(Mode 3 as defined in 5 plays no part in this interaction, which is stronger than 
the side-band instability.) Consistent with the space scale in (43), the region of 
parameter space under consideration is that close to the long-wave resonance, for 
which 

where F is of order unity, so that 

k - 9 ~  = rd, (45) 

c, (k, z) 2: c, (O,ZZ) + re%, (46) 

where A,  is defined by (36). 

the new scaling (43); the leading-order equations, using (46), are 
Now the expansion of the operator F in (6) goes through in the same way with 

I (aim; + c, apx’) zI*) = 0, 

( a p ;  + c, apx’) ~ p )  = 0, 
(47) 

whence we may look for solutions 

2:) = M, (T;)exp [ ~ K ( X ‘ -  C, Ti)]  + N, (TL) exp [ - k ( X ’  -c2 Ti)]. (48) 

At the next order 

where for simplicity, a = a(k,, k,, k,) and p = P(k,, k:, k,). Suppression of 
secularities in (49), using (48), yields the equations 

i 
[ d / d ~ ; ;  + i ~ ,  K ( K  + zr 11 M, = - i a ~  (M, + N,* ), 

[ ~ / ~ T ; + ~ A , K ( K - w ) J N ,  = - i a ~  (M: +N,) ,  

[d/dTI,+iA2K2]N, = ip(AM: +A*Nl). 

[d/dT;+iA,K2]M2 = - ip(A*Ml+AN:) ,  

Equations (50) have solutions (MI,  N,*, M,, N,*) cc exp ( - iQTA), where 

[(n - 2 4  r)2 - A; ~ 4 1  [LV - A; 4 - 4aphl K3 Q I A  1 2  = 0. (51) 
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A t  this stage it is convenient to set / A /  3 1 (thus defining the precise value 
of E )  and to note that A, = 0 for Rossby waves. Then (51) gives R = 0 or 

n[(R - 2 K h l  r), - A: K4] - 4@Al K3 = 0. (52) 

This equation has one or three real roots, any complex roots occurring in conju- 
gate pairs, so that there is at  most one growing root with Im R = 0 for any value 
of the coefficients. 

Since the analyses of triad and side-band interaction are valid for Ik - re 11 
> O(s)  while that of this section requires Ik- qcll < O(E%),  the ranges of applica- 
bility overlap and in the limit I rl +co (on a scale of order unity; for consistency, 
1 r(  e-3) we recover from (52) the solutions of the previous sections in the limit 
Ik-q,lI-+O. 

With IF( +co and K < O(l),  (52) has the solutions 

R N- apKp1 r2 (53) 

and (54) 

Bearing in mind (45) and (46) and the fact that A, = 0 it is apparent that, in this 
limit, the solution (53) (together with R = 0) corresponds to the stable side-band 
mode (i) of 3 5 while (54) represents mode (ii), corresponding precisely to (39). The 
latter mode is unstable if 

-too, I+?\ = O ( l ) ,  
when Im R = 0 unless 

s1 N 2 4  r t- [A; K4 + 2apK2/r~. 

< 0, i.e. k < r,l (since ap > 0). 
The resonant-triad solutions are recovered in the limit 

K2 = 4r2, (55) 

in which case Q2 N- -2aPr; (56) 

instability occurs for I' > 0, i.e. k > qcl. By virtue of (48) we may, without loss of 
generality, define K > 0, so that the appropriate root of (55) is K = 2 r ,  in agree- 
ment with(27). It follows from(50) that I NII/IMII a lr1-4; thus the triad structure 
of $ 4  is recovered as 1 rl +coo. By expanding the interaction coefficients in (20) 
about the long-wave resonance, and using (55), we find with k, = ?jcl+I's8, 
k,  = - K E ~  and k, = - rC 1 - (r - K )  €3 that a(k,, k:, k:) 2: 2prd while a(k,, k:, 
k,*) = a. Noting that (C, - C,), = O ( d )  and that the first term on the right side of 
(20) is represented here in (48) on the time scale T,, it is clear that (20) and (54) are 
exactly equivalent in the appropriate limits. 

Between these limits, the evolution of the unstable solution is continuous. 
Using the relevant parameter values a = 1.18, p = 0.23 and A, = 0.55, figure 3 
shows the maximum growth rate I m  R of the unstable solution to (54) as a func- 
tion of r and the value of K to which this maximum corresponds. Also shown is the 
range of K for which (54) has unstable roots. The wave is unstable for all r and the 
single unstable mode evolves continuously from the side-band solution (with 
R -+ 0 on this scaling) as r--f - co to the triad instability (R  + co) as r -+ co. In 
view of the discussion at  the end of 0 4 concerning the reason for the loss of validity 
of the triad analysis as k - qc 1 -+ 0+, this continuity between four-wave and three- 
wave interactions is not as surprising as it may at  first seem. 
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FIGURE 3. ( a )  Maximum growth rate I m  R of the unstable solution to (52).  ( 6 )  Solid curve, 
long-wave wavenumber K~ corresponding to the maximum growth rate in (a) : dashed 
curves, range of K for which instability occurs. 

7. Summary and discussion 
In an inviscid, zonally unbounded channel of fluid, a Rossby wave of gravest 

meridional structure is unstable to resonant-triad interactions if the ratio of its 
zonal and meridional wavenumbers kll is greater than T~ = 0.681. A wave of 
higher meridional structure is always unstable if its zonal wavenumber is non- 
zero. Zonally long waves (k/Z < ye) are unstable to side-band/long-wave pertur- 
bations; this process, being much slower than the triad interaction, will be of 
importance only in the case 1 = 1, when the wave would otherwise be stable. The 
transition at  kll = T~ corresponds to a resonance in which the wave group velocity 
is equal to the long-wave speed. The growth rates in this regime are formally 
O ( d )  but the nature of the transition is one of continuous evolution from the 
side-band to the triad instability. 

Instability may also occur via third-order, quartet resonances: unbounded 
Rossby waves can interact in such a way (Newel1 1969). The time scale of this 
interaction is of order 6-2, so that the conclusions of this paper would be affected 
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only to the extent that quartet instabilities might occur with kll < vc, 1 = 1, with 
growth rates perhaps numerically larger than, but formally of the same order as, 
those associated with the side-band resonance. 

The long-wave resonance has been analysed with sufficient generality to 
suggest more general qualitative applicability of the results. For internal wave 
motions, the significance of the long-wave resonance at  kll = T~ = 0.77 and of 
unstable side-band resonances was demonstrated by Grimshaw (1975). The 
transition is, however, more import,ant in the Rossby-wave case, when long waves 
are stable to more rapid interactions. 

The transition at  kll = 7, may have greater significance than that suggested by 
a stability analysis alone, in that the state to which an initially sinusoidal wave 
evolves as a result of the instability may be quite different in the two regimes. In 
the similar internal wave problem, the side-band interaction is governed by a 
nonlinear Schrodinger equation (Grimshaw 1975) which has (perhaps stable) 
envelope solutions to which the wave may evolve. Triad instabilities, on the other 
hand, will probably lead to a wave entirely losing its identity. At least one 
of the initially small amplitude, growing perturbations is itself unstable (having 
12 2) and breakdown in this regime is likely to generate motion on all 
scales, as in the experiments of, for example, McEwan et al. (1972) and Martin 
et al. (1972). 

In this context, it is noteworthy that Hide (1958; see also Hide & Mason 1975) 
found, over a wide range of 1, that ‘regular’ baroclinic waves in a rotating annulus 
always have kll less than about 1.4 (if viscosity isnot too large); any change in the 
imposed conditions that would be expected to produce an increase in k leads to 
‘irregular’ flow. Loesch (1974) studied the interaction between a weakly unstable 
wave and two neutral modes in a two-layer baroclinic model. The wavenumbers of 
the triad he considered (figure 16 of his paper) vary with k,  in a manner similar to 
that of mode 1 in figure 1 ; in particular, there is a transition where, in the notation 
of this paper, kll E 0.7, which may be shown tc correspond to the long-wave 
resonance. This suggests that a more detailed study of baroclinic wave interac- 
tions may be an important step in the study of the evolution of such systems. 

The analysis throughout this paper is based on the assumption of infinite 
channel length, i.e. a continuous zonal spectrum. If the channel is bounded 
zonally, the consequent spectral quantization may stabilize the interaction in all 
three regimes. Instability via the resonant-triad interaction requires that the 
perturbation wavenumber differs from the resonant value by less than a quantity 
O(e) (i.e. in the notation of 8 3, 1x1 < AlZ3). If the channel length is a-lL (a < 1) 
the increment between allowable zonal wavenumbers is of order a;  if a < O(E) 
then at  least one of these allowable values will differ from resonance by less than 
the resonance bandwidth, whereas if a % E resonance is unlikely. The restrictions 
imposed by finite size are discussed in more detail and in greater generality in 
another paper (Plumb 1976). Breakdown via side-band interaction or at  the long- 
wave resonance takes the form of a long modulation developing on the basic wave; 
in the former case, the wavelength of this modulation must be larger than a 
quantity or order e-lL [see (41)], so that similar constraints are imposed on both 
t’riad and side-band instability. At  the long-wave resonance, however, the modu- 
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lation wavelength is of order unity on a scale E - 8 ;  hence in this special case, 
instability may occur when the channel length is of the order of E-BL, a less 
severe requirement. 

I should like to express my thanks to Dr R. Grimshaw, who drew my attention 
to the existence and significance of the long-wave resonance. 
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